
C++ Contracts
A Meaningfully Viable Product

Andrei Zissu

Who am I?
Andrei Zissu
Morphisec – preventive cybersecurity + anti-ransomware

2

• WG21 member for the last 3 years
• Active in SG21

• Not one of the main authors of the Contracts proposal (P2900)

What This Talk Is About

• A moderately deep dive into contracts in C++26

• With some detail on considerations, controversies and paths not taken

• I’ll strive to make the terminology easily accessible
• Not always stick to the official terms

• I’ll try not to focus on theory, but rather on contracts machinery
• But will sometimes present the important parts
• Including relevant P2900 guiding principles, presented in proper context

• I will be borrowing heavily from P2900 (the C++ contracts proposal, previously
known as the contracts MVP) and P2899 (the rationale paper)
• Occasionally other papers will also be mentioned and possibly borrowed from

• Not nearly enough time to cover everything I would have wanted to

3

Some quick terminology

4

https://www.notion.so/page

Precondition Specifiers

• “Precondition” is a plain language term, while “precondition specifier” refers to a syntactic construct.

5

Postcondition Specifiers

6

• The term “postcondition” is used in everyday language, whereas “postcondition specifier” denotes a
specific syntactic element.

• r is directly naming the function return value – we’ll cover this later
• Also keep the const parameter in mind for later…

Function Contract Specifiers

• The collective term for all pre and post specifiers (for
preconditions and postconditions)

• I will often refer to them simply as pre and post

7

Assertion Statements (a.k.a contract_assert)

8

Contract Assertions

• The collective term for the syntactic construct specified by
function contract specifiers (pre and post) and assertion
statements

• Yes, this includes pre and post, while contract_assert is referred
to only as “assertion statement”

• For convenience I will be referring to them mostly in short as “CA”
– short for “contract assertion” (which is a bit of a mouthful)

9

Contract Predicates

• The C++ code inside a contract assertion
• Must be contextually convertible to bool
• We can usually afford to mix and match the terms “contract assertion”

and “contract predicate”
• But occasionally they do have important distinguishing differences
• Like in ignore semantics – CA is “evaluated”, predicate is not

10

Some Bikeshedding History
(or whatever you choose to name it)

11

Contract Assertions

• Started off as CCA (Contract-Checking Annotation)
• Renamed since some committee members didn’t think the term

“annotations” is appropriate
• Still being informally used (myself included)
• Also proposed: CAA (Contract-Assertion Annotation) - didn’t

catch on
• I proposed "contract clauses”

12

contract_assert

• Other languages use “assert”
• But that would conflict with the existing C assert macro
• So pending a future solution, we needed another name
• Over 40 alternatives were collected and explored in P2961R2 - A

natural syntax for Contracts

13

Bikeshedding – 1st Wheel

contractassert mustexpr dyn_assert musthold asrtexpr stdassert

truexpr co_assert ccassert contract_assert std_assert dyn_check

mustbetrue assertexpr assertion_check cppassert dynamic_assert cca_assert

assrt runtime_assert _Assert xpct assert_check Assert2

14

Bikeshedding – 2nd Wheel

cpp_assert affirm __assert assess insist asrt

cassert aver posit enforce audit claim

ass must confirm assertion ensure chk

verify expect check

15

• Finalists - contract_assert and assertexpr
• contract_assert won the day
• I voted against assertexpr as it resembles constexpr, which is

used only in declarations
• Given that contract_assert is currently a statement and not an

expression (see later) I’m particularly glad we chose this name

16

Syntactic restrictions,
and how they came to be

17

https://www.notion.so/page
https://www.notion.so/page

Multiple Declarations
– because we love IFNDR!
• Pre and Post must always be declared on function first-declarations

• First declaration - “a function from which no other declaration is reachable”

• i.e. 1st declaration found by compiler in current TU (a.k.a .cpp file)

• Otherwise it’s a “redeclaration”
• That includes function body when defined separately from first declaration

• Term used but not defined by the standard – until P2900 that is

• Contracts repetition in function redeclarations is allowed (not mandatory, since
compilers don’t need them) for several reasons:
• User friendliness
• Functions declared in multiple headers – we wouldn’t want include order to

matter (never feed the include hell trolls!)
• Friend declarations may be instantiated in any order

18
This Photo by Unknown Author is
licensed under CC BY

https://www.flickr.com/photos/meme_tn/7024122097
https://creativecommons.org/licenses/by/3.0/

Multiple Declarations
– because we love IFNDR!
• Repeated contract ill-formed if different from one on first declaration
• Equivalence is determined mostly by token equality (like ODR)
• But allows for different names for function and template parameters
• As long as the contract specifications do refer to the same entities
• Redeclarations in same TU cannot contain lambdas - would automatically

render them “not the same” due to different type for each lambda

19

Multiple Declarations
– because we love IFNDR!
• Well-formed renaming:

20

Multiple Declarations
– because we love IFNDR!
• Ill-formed renaming:

21

Semantics

22

Constification
– our favorite bowel non-movement
• Officially called “implicit const-ness”

• Often auto-corrected to “constipation”

• Main motivation:
• Catch bugs like “assert(my_map[“universal_answer”] == 42)”
• Avoid contracts producing side effects, whether inadvertently or intentionally

23

Constification
– our favorite bowel non-movement
• Effect:
• External entities referenced by CAs are treated similarly to data members in const member functions

• decltype still reports the original constness - same as in const member functions
• Implicit const is shallow (same as any other const in C++)

• Objects pointed to by pointers are not constified
• Objects referred to by reference are constified

• Globals were originally not included in constification – this was changed later to improve teachability

24

Constification
– our favorite bowel non-movement
• Controversial opt out - const_cast

• Must be used with utmost care, as the outcome is UB if the object was originally const

25

Constification
– our favorite bowel non-movement
• Objections:

• Modifies overload resolution, therefore contracts may actually be evaluating different code

26

Constification
– our favorite bowel non-movement
• Objections:

• Modifies overload resolution, therefore contracts may actually be evaluating different code
• Counter - such overloads are bugs on their own

• Counter counter (also given in other cases) - contracts must be useful with real world code, not
educate programmers

• Counter counter counter - contracts should indeed also encourage correct programming
practices

• Counter – constification is worth its shortcomings:
• Side effects in contracts create a different program – rendering such contracts potentially

meaningless/harmful
• May help discover latent side effects in existing assert statements

27

Constification
– our favorite bowel non-movement
• Objections:

• Shallow const
• Constification is incomplete and inconsistent
• In particular, pointers and references are inconsistent with each other
• Counter - pointer/reference inconsistency is an existing language feature
• Counter - automatic deep const would be very complex to specify and implement

28

Constification
– our favorite bowel non-movement
• Objections:

• Constification blocks some common non-const usages, such as logging and std::map::operator[]
• Counter - blocking std::map::operator[] is actually a good thing, as it can indeed modify the map;

std::map::at() can be used instead
• Not so with things like logging though

• Counter - const_cast as a controversial escape hatch
• Other proposed escape hatches: mutable (applied to CA), operator noconst (applied to expression in CA)

29

Postconditions

30

Postconditions- Referring to the Result Object
– what is a name?
• Post may specify a name for the return value, valid only within the post itself

• Works even when the function returns an unnamed temporary - no other way in the language to do this for all objects

• Although it is feasible for user-provided constructors, but only where those are available

• That name will capture the result object “on the fly”

31

Postconditions - Referring to the Result Object
– what is a name?
• Similar to references but not really one, also compared to structured bindings

• Main difference is that decltype doesn’t see it as a reference

32

Postconditions- Referring to the Result Object
– what is a name?

• const_cast, although discouraged, is actually safe in this case - result object being captured on the fly is not yet
assigned to the call site target variable, therefore it cannot yet be const

33

Referring to Parameters in Postconditions – wait,
isn’t const meaningless when passing by value?
• TLDR: by-value function parameters which are ODR-used (a.k.a consumed) in a post CA - must be const, in all the

function declarations

34

Referring to Parameters in Postconditions – wait,
isn’t const meaningless when passing by value?
• Motivation (also in P2521 - 3.13):

• CAs are “captured” by reference

• Post CAs are intended to work on initial parameter values

• Contracts are impossible to reason about if based on mutating parameters

• Must be consistent – ill-formed if by-value parameters ODR-used in post are not const in all the function declarations

• No such new restriction on other parameters – only those ODR-used in post

• With future contract capture clauses (not in C++26) function parameters won’t have to be const – since intent will be explicit

35

Evaluation and Contract-Violation Handling

36

Point of Evaluation
– who said it’s a single point?

• Pre/post see function parameters, but not local variables
• Result object is initialized before post (thus post can see it), but is not yet considered bound

• Caller context const (if present) doesn’t apply yet (meaning const_cast of result object in post is safe from UB)
• Post is only evaluated on normal exit (no try-catch in pseudo-code)

• Evaluation when exiting due to exception may be possible in the future
• Post is evaluated only after local variables destruction - since those might influence what post is checking

37

Evaluation Semantics and selection thereof
– because nothing is pre-ordained
• Checking semantics

• Observe
• Terminating semantics (would have been better named enforcing semantics)

• Enforce
• Quick_enforce (was “Louis semantic”)

• Ignore semantic
• Unlike C assert, it ODR-uses and must be well-formed

38

Evaluation Semantics and selection thereof
– because nothing is pre-ordained
• Upon violation

• At run time
• Observe

• Invoke violation handler
• Continue execution (upon normal return from violation handler)

• Enforce
• Invoke violation handler
• Terminate (upon normal return from violation handler)

• Quick_enforce
• Terminate immediately

• At compile time
• Observe – issue diagnostic (a.k.a warning)
• Enforce and quick_enforce – make program ill-formed

• Ignore – doing nothing in both cases

39

Evaluation Semantics and selection thereof
– because nothing is pre-ordained
• Selection method of contract semantics is implementation-defined

• Because different implementations have different needs

• No specification of when this happens

• Any build stage

• Run time
• Allowing dynamic contracts configuration

• Build modes (e.g. debug and release) are no longer required for this
• But of course are still allowed

• Different semantics may be selected for different CAs in the same TU
• Or even for the same CA at different evaluations!

40

Evaluation Semantics and selection thereof
– because nothing is pre-ordained
• Implementations may offer any non-empty subset of the 4 semantics

• Meaning that offering ignore semantic alone is compliant, which entails:
• Enforcing that CAs remain well-formed
• ODR-use

• Side effects possible, e.g. initializing static data members of class templates

• Chosen semantic intentionally undetectable from code at compile time
• To avoid contracts changing observed behavior

41

Elision and Duplication - I swear to perhaps check
the truth, and check it again and again and again,
so help me the semantic
• Any CA may be evaluated 0…N times

• Possibly with different semantics each time

• Repetition is required for supporting different caller and callee contract semantics
• Likely to affect mainly pre and post
• Up to 2 evaluations should normally suffice,

• Other than multiple repetitions to test for unwanted CA side effects

• Implementation requirements
• Define an upper bound for repetition

• Implementation recommendations
• Allow users to configure any number of repetitions
• Make the default one single evaluation without repetitions

42

Elision and Duplication - I swear to perhaps check
the truth, and check it again and again and again,
so help me the semantic
• Elision can only happen if the compiler can prove that the predicate:

• Returns true – typically if any of the following holds:
• It’s evaluated at compile time
• It’s guaranteed by previous CAs (in checked terminating semantics)

contract_assert(x>1);
contract_assert(x>0);

• Cannot throw, longjmp or terminate

43

Elision and Duplication - I swear to perhaps check
the truth, and check it again and again and again,
so help me the semantic
• With elision the compiler may also generate an equivalent expression

• Which is only required to cover the originally well-defined cases
• UB in original predicate is fair game

• Existing side effects may be ditched in the process,

• No new side effects may be introduced

44

Elision and Duplication - I swear to perhaps check
the truth, and check it again and again and again,
so help me the semantic
• Elision is all or nothing - either all side effects of a CA are dropped or none at all

• Take away: better not have side effects in CAs
• Or at least don’t depend on them for business logic

• As-if rule - multiple successful evaluations are undistinguishable from a single one

• Number of evaluations may still affect total execution time
• Is that observable behavior? – depends on context

45

The Contract-Violation Handler
– you can’t avoid termination (or can you?)

• A function named ::handle_contract_violation

• Single argument of type const std::contracts::contract_violation&

• Returns void

• May be noexcept (but definitely doesn’t have to be)

46

Definition:

The Contract-Violation Handler
– you can’t avoid termination (or can you?)

47

The Contract-Violation Handler
– you can’t avoid termination (or can you?)

• Implementations must provide default handlers

• Recommended to output the contract_violation info and to be noexcept

• Default handler cannot be directly called by user code

• But it can be called indirectly, via
std::contracts::invoke_default_contract_violation_handler

• But only from custom violation handlers, since users have no way of creating
contract_violation objects

48

Properties:

The Contract-Violation Handler
– you can’t avoid termination (or can you?)

• Implementations may allow the handler to be replaceable
• Replacement entails providing a same-name-and-signature function (inc. return type)
• For normal functions this would result in linker errors (ambiguous symbol)
• May have a different throwing specification than the default handler
• Hence the standard library provides only an implementation but not an includable

declaration of the default handler
• Same as global operators new and delete
• Some may consider that an unacceptable security risk – that’s ok

49

The Contract-Violation Handler
– you can’t avoid termination (or can you?)

Properties:

The Contract-Violation Handler
– you can’t avoid termination (or can you?)

• Libraries control what contracts they contain

• Application controls how contracts are handled
• With the custom handler instrumental in their toolbox

• Installed at link time , because:
• Different TUs and libs may be compiled at different times and with different toolchains
• Too risky security-wise at run time

• Replacing the handler doesn’t require recompiling the whole application (and libraries)
• Contracts would be dead on arrival otherwise

50

The Contract-Violation Handler
– you can’t avoid termination (or can you?)

Rationale:

The Contract-Violation Handler
– you can’t avoid termination (or can you?)

• May reside anywhere other than the heap

• Method of construction determined by implementation

51

The Contract-Violation Handler
– you can’t avoid termination (or can you?)

contract_violation main object requirements:

Throwing Violation Handlers and
noexcept(contract_assert(false))
– Are you calling me a liar?
• Contract violation handlers can do anything
• Including throw or longjmp instead of returning normally
• Throw and longjmp can circumvent enforce semantic - and that’s a feature, not a bug!
• That’s actually an intentional backdoor in P2900

• Throwing violation handlers were introduced in view of systems which can’t afford
termination

• After Bjarne brought this up in P2698R0
• Likely buggy code following a failed CA will probably crash anyway

• Actually not necessarily a backdoor
• The main guarantee of enforce can be viewed as not allowing execution of the

immediately following code
• Remember I said “terminating semantics” should have been named “enforcing

semantics”?

52

Throwing Violation Handlers and
contract_assert(false) – are you calling me a liar?

• Compiler must assume any CA might throw (if throwing violation handlers are
supported)
• Since throwing specification is only known at link time

• Code bases might want to avoid making narrow-contract functions noexcept

• Since one day their CAs might throw

• And also to allow failure-based unitesting relying on exceptions

• Also known as the Lakos Rule

53

Throwing Violation Handlers and
contract_assert(false) – are you calling me a liar?

• So then, what should noexcept(contract_assert(false)) return?

• Having contracts alter an exception specification would violate the prime directive
• But a previously non-throwing function/expression may now be throwing
• Depending on whether the installed violation handler is noexcept, which is unknown at compile time
• For which reason the mentioned expression must be assumed to be true (on platforms supporting throwing

violation handlers)

54

Throwing Violation Handlers and
contract_assert(false) – are you calling me a liar?

• Tell the truth and violate the prime directive

• Or lie and be damned for all eternity

• And we did fight over this almost for all eternity… ∞
• And as in other similar cases we chose to avoid the land mine altogether

• Although this time not by making it ill-formed

55

Rock and hard place:

Throwing Violation Handlers and
contract_assert(false) – are you calling me a liar?

• But rather with a little cheating

• We made contract_assert a statement rather than an expression

• Well, I lied a bit too - this does make noexcept(contract_assert(false)) indirectly ill-formed

• It also restricts contract_assert somewhat – vs C assert which can also act as a sub-expression

• Which immediately-invoked lambdas help mitigate

• Instead of this:
• const int j = (contract_assert(i > 0), i);

• You can write this:
• const int j = ([i]{ contract_assert(i > 0); }(), i);
• Which works since this works:

• const int j = (void{}, i);
56

Throwing Violation Handlers and
contract_assert(false) – are you calling me a liar?

Rock and hard place:

Throwing Violation Handlers and
contract_assert(false) – are you calling me a liar?

• Not if we redefine the noexcept operator

• To mean “no exceptions in contract”

• And that isn’t even lying

• Because UB can’t promise anything by its very definition

• Including that it won’t throw!

57

Throwing Violation Handlers and
contract_assert(false) – are you calling me a liar?

But is it really cheating?

Final Word

• Contracts are complicated

• As is C++

• Which is why it took so long to have them delivered

• But you won’t normally care about all these details

• Like about most other C++ details

• But you can leverage them when necessary

• You already know what I’m going to say here…

• At the end of the day, contracts are a great tool

• Like C++, you know the drill…

58

Final Word

• Many thanks to the many contributors who made Contracts finally happen in C++26!

• And special thanks to my reviewers: Timur Doumler and Joshua Berne

• Which sent me so many comments that any remaining mistakes are definitely mine

59

Thank You!

Let’s get in touch!
andrziss@gmail.com
https://www.linkedin.com/in/andreizissu/

Questions?

60

mailto:andrziss@gmail.com
https://www.linkedin.com/in/andreizissu/

	Introduction
	Slide 1
	Slide 2: Who am I?
	Slide 3: What This Talk Is About

	Some quick terminology
	Slide 4: Some quick terminology
	Slide 5: Precondition Specifiers
	Slide 6: Postcondition Specifiers
	Slide 7: Function Contract Specifiers
	Slide 8: Assertion Statements (a.k.a contract_assert)
	Slide 9: Contract Assertions
	Slide 10: Contract Predicates

	Bikeshedding History
	Slide 11: Some Bikeshedding History (or whatever you choose to name it)
	Slide 12: Contract Assertions
	Slide 13: contract_assert
	Slide 14: Bikeshedding – 1st Wheel
	Slide 15: Bikeshedding – 2nd Wheel
	Slide 16

	Syntactic restrictions
	Slide 17: Syntactic restrictions, and how they came to be
	Slide 18: Multiple Declarations – because we love IFNDR!
	Slide 19: Multiple Declarations – because we love IFNDR!
	Slide 20: Multiple Declarations – because we love IFNDR!
	Slide 21: Multiple Declarations – because we love IFNDR!

	Semantics
	Slide 22: Semantics
	Slide 23: Constification – our favorite bowel non-movement
	Slide 24: Constification – our favorite bowel non-movement
	Slide 25: Constification – our favorite bowel non-movement
	Slide 26: Constification – our favorite bowel non-movement
	Slide 27: Constification – our favorite bowel non-movement
	Slide 28: Constification – our favorite bowel non-movement
	Slide 29: Constification – our favorite bowel non-movement
	Slide 30: Postconditions
	Slide 31: Postconditions- Referring to the Result Object – what is a name?
	Slide 32: Postconditions - Referring to the Result Object – what is a name?
	Slide 33: Postconditions- Referring to the Result Object – what is a name?
	Slide 34: Referring to Parameters in Postconditions – wait, isn’t const meaningless when passing by value?
	Slide 35: Referring to Parameters in Postconditions – wait, isn’t const meaningless when passing by value?

	Evaluation and Contract-Violation Handling
	Slide 36: Evaluation and Contract-Violation Handling
	Slide 37: Point of Evaluation – who said it’s a single point?
	Slide 38: Evaluation Semantics and selection thereof – because nothing is pre-ordained
	Slide 39: Evaluation Semantics and selection thereof – because nothing is pre-ordained
	Slide 40: Evaluation Semantics and selection thereof – because nothing is pre-ordained
	Slide 41: Evaluation Semantics and selection thereof – because nothing is pre-ordained
	Slide 42: Elision and Duplication - I swear to perhaps check the truth, and check it again and again and again, so help me the semantic
	Slide 43: Elision and Duplication - I swear to perhaps check the truth, and check it again and again and again, so help me the semantic
	Slide 44: Elision and Duplication - I swear to perhaps check the truth, and check it again and again and again, so help me the semantic
	Slide 45: Elision and Duplication - I swear to perhaps check the truth, and check it again and again and again, so help me the semantic
	Slide 46: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 47: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 48: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 49: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 50: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 51: The Contract-Violation Handler – you can’t avoid termination (or can you?)

	Noteworthy Design Consequences
	Slide 52: Throwing Violation Handlers and noexcept(contract_assert(false)) – Are you calling me a liar?
	Slide 53: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?
	Slide 54: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?
	Slide 55: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?
	Slide 56: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?
	Slide 57: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?

	Final Word
	Slide 58: Final Word
	Slide 59: Final Word
	Slide 60: Thank You!

