Andrei Zissu

C++ Contracts
A Meaningfully Viable Product

Who am |?

Andrei Zissu

Morphisec — preventive cybersecurity + anti-ransomware

* WG21 member for the last 3 years
* Active in SG21

* Not one of the main authors of the Contracts proposal (P2900)

What This Talk Is About

A moderately deep dive into contracts in C++26

With some detail on considerations, controversies and paths not taken

I’ll strive to make the terminology easily accessible
* Not always stick to the official terms

I’ll try not to focus on theory, but rather on contracts machinery
* But will sometimes present the important parts
* Including relevant P2900 guiding principles, presented in proper context

| will be borrowing heavily from P2900 (the C++ contracts proposal, previously
known as the contracts MVP) and P2899 (the rationale paper)

* Occasionally other papers will also be mentioned and possibly borrowed from

* Not nearly enough time to cover everything | would have wanted to

Some quick terminology

https://www.notion.so/page

Precondition Specifiers

1 auto div{auto x, auto y)
2 pre{y = 8)

3

4 return x/vy;

5 1

i

7 int main()

2 {

a return div(l, @);
18)

Cutput of x86-64 gce (contracts natural syntax) (Compiler #1) & X
A~ [Owraplines = Selectall

ASM generation compiler returned: 8

Execution build compiler returned: @

Program returned: 139
contract wiolation in function diw<int, int> at fapp/example.cpp:2: y != 0
[assertion kind: pre, semantic: enforce, mode: predicate false, terminating: yes]
terminate called without an actiwve exception

Program terminated with =zignal: SIGSEGV

* “Precondition”is a plain language term, while “precondition specifier” refers to a syntactic construct.

Postcondition Specifiers

auto plus(const unsigned x, unsigned y)
post(r: r »= x)

{

return x - y;

int main()

1

2

3

4

5 I
6
8 {

g return plus(l, 1);
1@ 1

Output of x86-64 goe (contracts natural syntax) (Compiler #1) & X
A~ [OWraplines = Selectall

ASM generation compiler returned: @

Execution build compiler returned: @

Program returned: 139
contract wiolation in function plu= at /app/example.cpp:r2: r »>= x
[assertion kind: post, semantic: enforce, mode: predicate false, terminating: yes]
terminate called without an active exception

Program terminated with signal: SIGSEGV

* The term “postcondition” is used in everyday language, whereas “postcondition specifier” denotes a
specific syntactic element.

* risdirectly naming the function return value —we’ll cover this later

* Also keep the const parameter in mind for later...

Function Contract Specifiers

* The collective term for all pre and post specifiers (for
preconditions and postconditions)

* | will often refer to them simply as pre and post

Assertion Statements (a.k.a contract_assert)

1 auto plus{unsigned x, unsigned y)
2 v |

2 auto ret = ®x - y;

4 contract _assert(ret »= x);

& return ret;

6 }

B int main()

9 v {
18 return plus(1l, 1);
11}

Cutput of x86-64 gce (contracts natural syntax) (Compiler #1) & X
A~ OWraplines = Selectall

ASM generation compiler returned: @

Execution build compiler returned: @

Program returned: 139
contract wiolation in function plus at /app/example.cpp:4: ret >= x
[assertion kind: assert, semantic: enforce, mode: predicate false, terminating: yes]
terminate called without an actiwve exception

Program terminated with signal: SIGSEGV

Contract Assertions

* The collective term for the syntactic construct specified by
function contract specifiers (pre and post) and assertion
statements

* Yes, this includes pre and post, while contract_assert is referred
to only as “assertion statement”

* For convenience | will be referring to them mostly in short as “CA”
—short for “contract assertion” (which is a bit of a mouthful)

Contract Predicates

* The C++ code inside a contract assertion

* Must be contextually convertible to bool

* We can usually afford to mix and match the terms “contract assertion”
and “contract predicate”

* But occasionally they do have important distinguishing differences

* Like inignore semantics — CA is “evaluated”, predicate is not

10

Some Bikeshedding History
(or whatever you choose to name it)

Contract Assertions

* Started off as CCA (Contract-Checking Annotation)

* Renamed since some committee members didn’t think the term
“annotations” is appropriate

* Still being informally used (myself included)

* Also proposed: CAA (Contract-Assertion Annotation) - didn’t
catch on

* | proposed "contract clauses”

12

contract_assert

* Other languages use “assert”
* But that would conflict with the existing C assert macro
* So pending a future solution, we needed another name

* Over 40 alternatives were collected and explored in P2961R2 - A
natural syntax for Contracts

13

B

keshedding — 15t Wheel O%E

contractassert mustexpr dyn_assert musthold asrtexpr stdassert

truexpr co_assert ccassert contract_assert std_assert dyn_check

mustbetrue assertexpr assertion_check cppassert dynamic_assert cca_assert

runtime_assert _Assert assert_check Assert2

- - nd °
Bikeshedding — 2" Wheel o¢o

15

* Finalists - contract_assert and assertexpr
e contract_assert won the day

* | voted against assertexpr as it resembles constexpr, which is
used only in declarations

* Given that contract_assert is currently a statement and not an
expression (see later) I'm particularly glad we chose this name

16

Syntactic restrictions,
and how they came to be

https://www.notion.so/page
https://www.notion.so/page

Multiple Declarations
— because we love IFNDR!

Pre and Post must always be declared on function first-declarations

First declaration - “a function from which no other declaration is reachable”

i.e. 1st declaration found by compiler in current TU (a.k.a .cpp file)

Otherwise it’s a “redeclaration”
* That includes function body when defined separately from first declaration

Term used but not defined by the standard — until P2900 that is

Contracts repetition in function redeclarations is allowed (not mandatory, since
compilers don’t need them) for several reasons:

 User friendliness

* Functions declared in multiple headers —we Wouldn t want include order to
matter (never feed the include hell trolls!) ¢

* Friend declarations may be instantiated in an'y order

This Photo by Unknown Author is
licensed under CC BY

18

https://www.flickr.com/photos/meme_tn/7024122097
https://creativecommons.org/licenses/by/3.0/

Multiple Declarations
— because we love IFNDR!

Repeated contract ill-formed if different from one on first declaration
Equivalence is determined mostly by token equality (like ODR)

But allows for different names for function and template parameters
As long as the contract specifications do refer to the same entities

Redeclarations in same TU cannot contain lambdas - would automatically
render them “not the same” due to different type for each lambda

19

Multiple Declarations
— because we love IFNDR!

* Well-formed renaming:

1
2
4
5

struct C

{
3 double div(double x)

pre(x = 8);
i

7 double C::div(double y)

14
11
12
14

16

pra{y = 8)

{

t ¥
I3
int in()
{

turn C{}.div(1);
I3

20

Multiple Declarations
— because we love IFNDR!

* |ll-formed renaming:

1 struct C

2 v {

3w double div(double x, double y)
a4 pre(y !=8);

5 0

“ double C::div{double x, double y)

B pre(x != @)

9w {

18 return x/y;

1 1}

12

13 int main()

14 ~ {

5 return C{}.div(1, 1);

16 1}
Dutput of x86-64 gce (contracts natural syntax) (Compiler #1) & X
A~ OWraplines = Selectall

<source»:8:11: error
g | pre(x I=

| A

: mismatched
Q)

rua ™ rurnana

contract condition in declaration

<source»:4:15: note: previous contract here

4 | pre(

Compiler returned: 1

y I=8);

rura™ rrrara

21

Semantics

22

Constification
— our favorite bowel non-movement

* Officially called “implicit const-ness”
* Often auto-corrected to “constipation”

* Main motivation:
e Catch bugs like “assert(my_map[“universal_answer”] == 42)”
* Avoid contracts producing side effects, whether inadvertently or intentionally

Principle 6: No Destructive Side Effects

Contract assertions whose predicates, when evaluated, could affect the correctness of the
program should not be supported.

23

Constification
— our favorite bowel non-movement

Effect:

External entities referenced by CAs are treated similarly to data members in const member functions
* decltype still reports the original constness - same as in const member functions

Implicit constis shallow (same as any other constin C++)
* Objects pointed to by pointers are not constified
* Objects referred to by reference are constified

Globals were originally not included in constification — this was changed later to improve teachability

int global = 0;

void f(int x, int y, char *p, int& ref)

pre((x = 0) == 0) // error: assignment to const lvalue
pre((xp = 5)) // OK

pre((ref = 5)) // error: assignment to const lvalue
pre((global = 2)) // error: assignment to const lvalue

int* gp = &global;
contract_assert((gp = nullptr)); // error: assignment to const lvalue
contract_assert((*gp = 6)); // OK

24

Constification
— our favorite bowel non-movement

* Controversial opt out - const_cast
* Must be used with utmost care, as the outcome is UB if the object was originally const

int g(int i, comst int j)
pre(++const_cast<int&>(i)) // OK (but discouraged)
pre(++const_cast<int&>(j)) // undefined behavior
post (++const_cast<int&>(i)) // OK (but discouraged)
post (++const_cast<int&>(j)) // undefined behavior

int k = 0;

const int 1 = 1;

contract_assert(++const_cast<int&>(k)); // OK (but discouraged)
contract_assert(++const_cast<int&>(1)); // undefined behavior

25

Constification
— our favorite bowel non-movement

* Objections:
* Modifies overload resolution, therefore contracts may actually be evaluating different code

struct X {};
bool p(X&) { return true; }
bool p(const X&) { return false; }

void my_assert(bool b) { if (!b) std::terminate(); }

void f(X x1)

pre(p(x1)) // fails
{
my_assert(p(x1)); // passes
X x2;
contract_assert(p(x2)); // fails
my_assert (p(x2)); // passes

26

Constification
— our favorite bowel non-movement

* Objections:
* Modifies overload resolution, therefore contracts may actually be evaluating different code
* Counter - such overloads are bugs on their own

* Counter counter (also given in other cases) - contracts must be useful with real world code, not
educate programmers

* Counter counter counter - contracts should indeed also encourage correct programming
practices

* Counter - constification is worth its shortcomings:

* Side effects in contracts create a different program —rendering such contracts potentially
meaningless/harmful

* May help discover latent side effects in existing assert statements

27

Constification
— our favorite bowel non-movement

* Objections:
e Shallow const
e Constification is incomplete and inconsistent
* |n particular, pointers and references are inconsistent with each other
* Counter - pointer/reference inconsistency is an existing language feature
* Counter - automatic deep const would be very complex to specify and implement

28

Constification
— our favorite bowel non-movement

* Objections:

Constification blocks some common non-const usages, such as logging and std::map::operator[]

* Counter - blocking std::map::operator[] is actually a good thing, as it can indeed modify the map;
std::map::at() can be used instead

* Not so with things like logging though
Counter - const_cast as a controversial escape hatch

Other proposed escape hatches: mutable (applied to CA), operator noconst (applied to expression in CA)

29

Postconditions

Postconditions- Referring to the Result Object
—whatis a name?

* Post may specify a name for the return value, valid only within the post itself

* Works even when the function returns an unnamed temporary - no other way in the language to do this for all objects
* Although itis feasible for user-provided constructors, but only where those are available

* That name will capture the result object “on the fly”

31

Postconditions - Referring to the Result Object
—what is a name?

e Similar to references but not really one, also compared to structured bindings

* Main difference is that decltype doesn’t see it as a reference

#include <type traits>

3 int f() post(r: std::is_reference_v<decltype(r)>)

f
L

5 int x;

6 int& ref = x;

7 static_assert(std::is_reference_v<decltype(ref)>);

return 42;

! !

o
11 int main()
12 {
13 £();
14 return @;

A~ [OWraplines = Selectall

ASM generation compiler returned: ©
Execution build compiler returned: @

Program returned: 139

contract viclation in :‘L‘.Z‘.::L:T. f at 43’:C.'3)(a?‘.’:‘.?.€:t2_‘.2 sta 18 :efere":e J‘fle‘:_"{:zl_l/
[assextion kind: post, semantic: enforce, mode: predicate false, texrminating: yes
terminate called without an active exception

Program terminated with signal: SIGSEGV

Postconditions- Referring to the Result Object
—whatis a name?

struct S {
SO ;
S(const S&) = delete; // moncopyable, nonmovable
int 1 = 0;
bool foo() const;

}
const S f()
post(r: const_cast<S&>(r).i = 1) // OK (but discouraged)
{
return S{};
}
const Sy = £(); // well—defined behavior

bool b = £().foo(); // well—defined behavior

* const_cast, although discouraged, is actually safe in this case - result object being captured on the fly is not yet

assigned to the call site target variable, therefore it cannot yet be const
33

Referring to Parameters in Postconditions — walit,
Isn’t const meaningless when passing by value?

* TLDR: by-value function parameters which are ODR-used (a.k.a consumed) in a post CA - must be const, in all the
function declarations

void f(int i) post (i !'= 0); // error: i must be const.

void g(const int i) post (i != 0);
void g(int i) {} /7 error: missing const for i in definition

void h(const int i) post (i != 0);
void h(const int i) {}
void h{int i); /7 error: missing const for i in redeclaration

34

Referring to Parameters in Postconditions — walit,
Isn’t const meaningless when passing by value?

* Motivation (also in P2521 - 3.13):

* CAs are “captured” by reference

* Post CAs are intended to work on initial parameter values

* Contracts are impossible to reason about if based on mutating parameters

* Must be consistent —ill-formed if by-value parameters ODR-used in post are not const in all the function declarations
* No such new restriction on other parameters — only those ODR-used in post

* With future contract capture clauses (not in C++26) function parameters won’t have to be const — since intent will be explicit

35

Evaluation and Contract-Violation Handling

Point of Evaluation
—who said it’s a single point?

function call
init params|
pre
eval func body
contract assert (when reached by control flow)

init result object (this means actual caller context object for non-trivially copyable
returned types)

destruct local vars
post

destruct params — bind result object

* Pre/post see function parameters, but not local variables
 Result objectis initialized before post (thus post can see it), but is not yet considered bound

* Caller context const (if present) doesn’t apply yet (meaning const_cast of result object in post is safe from UB)
* Postis only evaluated on normal exit (no try-catch in pseudo-code)

* Evaluation when exiting due to exception may be possible in the future
* Postis evaluated only after local variables destruction - since those might influence what post is checking

37

Evaluation Semantics and selection thereof
— because nothing is pre-ordained

* Checking semantics
* Observe
* Terminating semantics (would have been better named enforcing semantics)
* Enforce
* Quick_enforce (was “Louis semantic”)

* Ignore semantic
* Unlike C assert, it ODR-uses and must be well-formed

38

Evaluation Semantics and selection thereof
— because nothing is pre-ordained

* Upon violation
* Atruntime
* Observe
* Invoke violation handler
* Continue execution (upon normal return from violation handler)
* Enforce
* Invoke violation handler
* Terminate (upon normal return from violation handler)
* Quick_enforce
* Terminate immediately
* At compile time
* Observe —issue diagnostic (a.k.a warning)
* Enforce and quick_enforce — make program ill-formed
* Ignore —doing nothing in both cases

39

Evaluation Semantics and selection thereof

— because nothing is pre-ordained

Selection method of contract semantics is implementation-defined
Because different implementations have different needs

No specification of when this happens

Any build stage

Run time
* Allowing dynamic contracts configuration

Build modes (e.g. debug and release) are no longer required for this
* But of course are still allowed

Different semantics may be selected for different CAs in the same TU
* Oreven forthe same CA at different evaluations!

40

Evaluation Semantics and selection thereof
— because nothing is pre-ordained

* Implementations may offer any non-empty subset of the 4 semantics

* Meaning that offering ignore semantic alone is compliant, which entails:
* Enforcing that CAs remain well-formed
* ODR-use

* Side effects possible, e.g. initializing static data members of class templates

* Chosen semantic intentionally undetectable from code at compile time
* To avoid contracts changing observed behavior

Principle 3: Concepts Do Not See Contracts

The mere presence of a contract assertion on a function or in a block of code should not
change the satisfiability of a concept, the result of overload resolution and SFINAE, the
branch selected by if constexpr, or the value returned by the noexcept operator.

41

Elision and Duplication - | swear to perhaps check
the truth, and check it again and again and again,
so help me the semantic

* Any CA may be evaluated O...N times
* Possibly with different semantics each time

* Repetition is required for supporting different caller and callee contract semantics
* Likely to affect mainly pre and post

* Upto 2 evaluations should normally suffice,
e Other than multiple repetitions to test for unwanted CA side effects

* Implementation requirements
* Define an upper bound for repetition

* Implementation recommendations
* Allow users to configure any number of repetitions
* Make the default one single evaluation without repetitions

42

Elision and Duplication - | swear to perhaps check
the truth, and check it again and again and again,
so help me the semantic

* Elision can only happen if the compiler can prove that the predicate:

* Returns true —typically if any of the following holds:
* |t’s evaluated at compile time

* It’s guaranteed by previous CAs (in checked terminating semantics)
contract_assert(x>1);
contract_assert(x>0);

* Cannot throw, longjmp or terminate

43

Elision and Duplication - | swear to perhaps check
the truth, and check it again and again and again,
so help me the semantic

* With elision the compiler may also generate an equivalent expression

 Which is only required to cover the originally well-defined cases
* UBin original predicate is fair game

* Existing side effects may be ditched in the process,

* No new side effects may be introduced

Principle 6: No Destructive Side Effects

Contract assertions whose predicates, when evaluated, could affect the correctness of the
program should not be supported.

int 1 = 0;
void £() pre ((++i, true));
void g() {

£Q; //1imaybeo, 1,17, etc.
}

44

Elision and Duplication - | swear to perhaps check
the truth, and check it again and again and again,
so help me the semantic

* Elisionis all or nothing - either all side effects of a CA are dropped or none at all

* Take away: better not have side effects in CAs
* Or atleastdon’tdepend on them for business logic

* As-if rule - multiple successful evaluations are undistinguishable from a single one

* Number of evaluations may still affect total execution time
* |sthat observable behavior? — depends on context

45

The Contract-Violation Handler
—you can’t avoid termination (or can you?)

Definition:

e Afunction named ::handle_contract_violation

* Single argument of type const std::contracts::contract_violation&
* Returns void

 May be noexcept (but definitely doesn’t have to be)

46

The Contract-Violation Handler
—you can’t avoid termination (or can you?

class contract_wiolation

1

// no user-accessible constructor; cannot be copied, moved, or assigned to

public:
const char* comment() const noexcept;
contracts: :detection_mode detection_mode() const noexcept;
exception_ptr evaluation_exception() const noexcept;
bool is_terminating() const noexcept;
assertion_kind kind{() const noexcept;
source_location location() const noexcept,;
evaluation_semantic semantic() const noexcept;

asserted expression

failed assertion / exception during evaluation
only for exception during evaluation

is it being invoked with a terminating semantic?
pre/post/assert

ignore/observe/enforce/quick_enforce

47

The Contract-Violation Handler
—you can’t avoid termination (or can you?)

Properties:

* Implementations must provide default handlers
* Recommended to output the contract_violation info and to be noexcept
* Default handler cannot be directly called by user code

 Butitcan be called indirectly, via
std::contracts::invoke_default contract violation _handler

* Butonly from custom violation handlers, since users have no way of creating
contract_violation objects

48

The Contract-Violation Handler
—you can’t avoid termination (or can you?)

Properties:

* Implementations may allow the handler to be replaceable

* Replacement entails providing a same-name-and-signature function (inc. return type)
* For normal functions this would result in linker errors (ambiguous symbol)

* May have a different throwing specification than the default handler

* Hence the standard library provides only an implementation but not an includable
declaration of the default handler

* Same as global operators new and delete
« Some may consider that an unacceptable security risk —that’s ok

49

The Contract-Violation Handler
—you can’t avoid termination (or can you?)

Rationale:

Libraries control what contracts they contain

Application controls how contracts are handled
* With the custom handler instrumental in their toolbox

Installed at link time , because:
* Different TUs and libs may be compiled at different times and with different toolchains
* Too risky security-wise at run time

Replacing the handler doesn’t require recompiling the whole application (and libraries)
* Contracts would be dead on arrival otherwise

50

The Contract-Violation Handler
—you can’t avoid termination (or can you?)

contract_violation main object requirements:

* May reside anywhere other than the heap

* Method of construction determined by implementation

51

Throwing Violation Handlers and
noexcept(contract_assert(false))
— Are you calling me a liar?

Contract violation handlers can do anything
Including throw or longjmp instead of returning normally
Throw and longjmp can circumvent enforce semantic - and that’s a feature, not a bug!

That’s actually an intentional backdoor in P2900

* Throwing violation handlers were introduced in view of systems which can’t afford
termination

* After Bjarne brought this up in P2698R0
* Likely buggy code following a failed CA will probably crash anyway

Actually not necessarily a backdoor

* The main guarantee of enforce can be viewed as not allowing execution of the
immediately following code

* Remember | said “terminating semantics” should have been named “enforcing
semantics”?

52

Throwing Violation Handlers and
contract_assert(false) — are you calling me a liar?

Compiler must assume any CA might throw (if throwing violation handlers are
supported)

* Since throwing specification is only known at link time

Code bases might want to avoid making narrow-contract functions noexcept

Since one day their CAs might throw

And also to allow failure-based unitesting relying on exceptions

Also known as the Lakos Rule

53

Throwing Violation Handlers and
contract_assert(false) — are you calling me a liar?

So then, what should noexcept(contract_assert(false)) return?

Principle 1: Prime Directive

The presence or evaluation of a contract assertion in a program should not alter the correctness
of that program (i.e.. the property that evaluation of the program does not violate any
provisions of its plain-language contract).

* Having contracts alter an exception specification would violate the prime directive

* But a previously non-throwing function/expression may now be throwing

* Depending on whether the installed violation handler is noexcept, which is unknown at compile time

* Forwhich reason the mentioned expression must be assumed to be true (on platforms supporting throwing
violation handlers)

54

Throwing Violation Handlers and
contract_assert(false) — are you calling me a liar?

Rock and hard place:

Tell the truth and violate the prime directive

Or lie and be damned for all eternity

And we did fight over this almost for all eternity... @

And as in other similar cases we chose to avoid the land mine altogether

Although this time not by making it ill-formed

Principle 14: Choose Tll-Formed to Enable Flexible Evolution

When no clear consensus has become apparent regarding the proper solution to a problem
that Contracts could address, the relevant constructs are left ill-formed.

Throwing Violation Handlers and
contract_assert(false) — are you calling me a liar?

Rock and hard place:

* But rather with a little cheating

* We made contract_assert a statement rather than an expression

* Well, | lied a bit too - this does make noexcept(contract_assert(false)) indirectly ill-formed

* |t also restricts contract_assert somewhat —vs C assert which can also act as a sub-expression
* Which immediately-invoked lambdas help mitigate

* |Instead of this:
« constintj=(contract_assert(i > 0), i);

* You can write this:
 constintj = ([i{ contract_assert(i > 0); }(), i);
* Which works since this works:

* constintj = (void{}, i); 56

Throwing Violation Handlers and
contract_assert(false) — are you calling me a liar?

But is it really cheating?

* Not if we redefine the noexcept operator

* To mean “no exceptions in contract”

* And thatisn’t even lying

* Because UB can’t promise anything by its very definition

* Including that it won’t throw!

57

Final Word

* Contracts are complicated

* Asis C++

* Which is why it took so long to have them delivered
* Butyouwon’t normally care about all these details
* Like about most other C++ details

* Butyou can leverage them when necessary

* You already know what I’m going to say here...

* Atthe end of the day, contracts are a great tool

* Like C++, you know the drill...

58

Final Word

* Many thanks to the many contributors who made Contracts finally happen in C++26!
* And special thanks to my reviewers: Timur Doumler and Joshua Berne

* Which sent me so many comments that any remaining mistakes are definitely mine

59

Thank You!

Let’s get in touch!
andrziss@gmail.com

https://www.linkedin.com/in/andreizissu/

Questions?

60

mailto:andrziss@gmail.com
https://www.linkedin.com/in/andreizissu/

	Introduction
	Slide 1
	Slide 2: Who am I?
	Slide 3: What This Talk Is About

	Some quick terminology
	Slide 4: Some quick terminology
	Slide 5: Precondition Specifiers
	Slide 6: Postcondition Specifiers
	Slide 7: Function Contract Specifiers
	Slide 8: Assertion Statements (a.k.a contract_assert)
	Slide 9: Contract Assertions
	Slide 10: Contract Predicates

	Bikeshedding History
	Slide 11: Some Bikeshedding History (or whatever you choose to name it)
	Slide 12: Contract Assertions
	Slide 13: contract_assert
	Slide 14: Bikeshedding – 1st Wheel
	Slide 15: Bikeshedding – 2nd Wheel
	Slide 16

	Syntactic restrictions
	Slide 17: Syntactic restrictions, and how they came to be
	Slide 18: Multiple Declarations – because we love IFNDR!
	Slide 19: Multiple Declarations – because we love IFNDR!
	Slide 20: Multiple Declarations – because we love IFNDR!
	Slide 21: Multiple Declarations – because we love IFNDR!

	Semantics
	Slide 22: Semantics
	Slide 23: Constification – our favorite bowel non-movement
	Slide 24: Constification – our favorite bowel non-movement
	Slide 25: Constification – our favorite bowel non-movement
	Slide 26: Constification – our favorite bowel non-movement
	Slide 27: Constification – our favorite bowel non-movement
	Slide 28: Constification – our favorite bowel non-movement
	Slide 29: Constification – our favorite bowel non-movement
	Slide 30: Postconditions
	Slide 31: Postconditions- Referring to the Result Object – what is a name?
	Slide 32: Postconditions - Referring to the Result Object – what is a name?
	Slide 33: Postconditions- Referring to the Result Object – what is a name?
	Slide 34: Referring to Parameters in Postconditions – wait, isn’t const meaningless when passing by value?
	Slide 35: Referring to Parameters in Postconditions – wait, isn’t const meaningless when passing by value?

	Evaluation and Contract-Violation Handling
	Slide 36: Evaluation and Contract-Violation Handling
	Slide 37: Point of Evaluation – who said it’s a single point?
	Slide 38: Evaluation Semantics and selection thereof – because nothing is pre-ordained
	Slide 39: Evaluation Semantics and selection thereof – because nothing is pre-ordained
	Slide 40: Evaluation Semantics and selection thereof – because nothing is pre-ordained
	Slide 41: Evaluation Semantics and selection thereof – because nothing is pre-ordained
	Slide 42: Elision and Duplication - I swear to perhaps check the truth, and check it again and again and again, so help me the semantic
	Slide 43: Elision and Duplication - I swear to perhaps check the truth, and check it again and again and again, so help me the semantic
	Slide 44: Elision and Duplication - I swear to perhaps check the truth, and check it again and again and again, so help me the semantic
	Slide 45: Elision and Duplication - I swear to perhaps check the truth, and check it again and again and again, so help me the semantic
	Slide 46: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 47: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 48: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 49: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 50: The Contract-Violation Handler – you can’t avoid termination (or can you?)
	Slide 51: The Contract-Violation Handler – you can’t avoid termination (or can you?)

	Noteworthy Design Consequences
	Slide 52: Throwing Violation Handlers and noexcept(contract_assert(false)) – Are you calling me a liar?
	Slide 53: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?
	Slide 54: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?
	Slide 55: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?
	Slide 56: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?
	Slide 57: Throwing Violation Handlers and contract_assert(false) – are you calling me a liar?

	Final Word
	Slide 58: Final Word
	Slide 59: Final Word
	Slide 60: Thank You!

